# metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

## Aquabis(1-methyl-1*H*-imidazole- $\kappa N^3$ )bis(nitrato- $\kappa O$ )copper(II)

#### **Run-Qiang Zhu**

Ordered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China Correspondence e-mail: zhurunqiang@163.com

Received 29 October 2010; accepted 16 November 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean  $\sigma$ (C–C) = 0.004 Å; R factor = 0.033; wR factor = 0.088; data-to-parameter ratio = 17.1.

The title complex molecule,  $[Cu(NO_3)_2(C_4H_6N_2)_2(H_2O)]$ , has crystallographically imposed twofold symmetry. The Cu<sup>II</sup> atom displays a distorted square-pyramidal CuN<sub>2</sub>O<sub>3</sub> coordination geometry. In the crystal, intermolecular O-H···O hydrogen bonds between the coordinated water molecule and the nitrate anions form chains parallel to the *c* axis.

#### **Related literature**

The title compound was studied as part of our work to obtain potential ferroelectric phase-change materials. For general background to ferroelectric metal-organic frameworks, see: Fu *et al.* (2009); Ye *et al.* (2006); Zhang *et al.* (2008, 2010).



Experimental

| Cryslal aala                      |                               |
|-----------------------------------|-------------------------------|
| $[Cu(NO_3)_2(C_4H_6N_2)_2(H_2O)]$ | b = 12.242 (2) Å              |
| $M_r = 369.78$                    | c = 10.509 (2) Å              |
| Monoclinic, $C2/c$                | $\beta = 93.98 \ (3)^{\circ}$ |
| a = 11.864 (2)  Å                 | $V = 1522.6 (5) \text{ Å}^3$  |
|                                   |                               |

Z = 4Mo  $K\alpha$  radiation  $\mu = 1.48 \text{ mm}^{-1}$ 

#### Data collection

| Rigaku SCXmini diffractometer          |  |
|----------------------------------------|--|
| Absorption correction: multi-scan      |  |
| (CrystalClear; Rigaku, 2005)           |  |
| $T_{\min} = 0.640, \ T_{\max} = 0.740$ |  |

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.033$  $wR(F^2) = 0.088$ S = 1.141742 reflections 7712 measured reflections 1742 independent reflections 1608 reflections with  $I > 2\sigma(I)$  $R_{\text{int}} = 0.031$ 

T = 293 K

 $0.30 \times 0.25 \times 0.20$  mm

102 parameters H-atom parameters constrained  $\Delta \rho_{max} = 0.45$  e Å<sup>-3</sup>  $\Delta \rho_{min} = -0.37$  e Å<sup>-3</sup>

### Table 1

Hydrogen-bond geometry (Å, °).

| $D - H \cdot \cdot \cdot A$ | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|-----------------------------|------|-------------------------|--------------|--------------------------------------|
| $O1-H1B\cdots O3^{i}$       | 0.85 | 2.48                    | 2.941 (3)    | 115                                  |
| $O1-H1C\cdots O3^{ii}$      | 0.85 | 2.48                    | 2.941 (3)    | 115                                  |
| $O1-H1C\cdots O3^{ii}$      | 0.85 | 2.48                    | 2.941 (3)    | 1                                    |

Symmetry codes: (i) -x + 1, -y + 1, -z; (ii) x, -y + 1,  $z + \frac{1}{2}$ .

Data collection: *CrystalClear* (Rigaku, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97*.

This work was supported by a start-up grant from Southeast University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2515).

#### References

- Fu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994–997.
- Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

- Ye, Q., Song, Y.-M., Wang, G.-X., Chen, K. & Fu, D.-W. (2006). J. Am. Chem. Soc. 128, 6554–6555.
- Zhang, W., Xiong, R.-G. & Huang, S.-P. D. (2008). J. Am. Chem. Soc. 130, 10468–10469.
- Zhang, W., Ye, H.-Y., Cai, H.-L., Ge, J.-Z. & Xiong, R.-G. (2010). J. Am. Chem. Soc. 132, 7300–7302.

supplementary materials

Acta Cryst. (2010). E66, m1628 [doi:10.1107/S1600536810047525]

## Aquabis(1-methyl-1*H*-imidazole- $\kappa N^3$ )bis(nitrato- $\kappa O$ )copper(II)

### R.-Q. Zhu

#### Comment

Dielectric constant measurements of compounds as a function of temperature is the basic method to find potential ferroelectric phase change materials (Fu *et al.*, 2009; Ye *et al.*, 2006; Zhang *et al.*, 2008; Zhang *et al.*, 2010). Unfortunately, the study carried out on the title compound indicated that the permittivity is temperature-independent, suggesting that there may be no dielectric disuniformity between 80 K to 350 K (m.p. 393–381 K). In this report the crystal structure of the title compound is reported.

The title complex molecules has crystallographically imposed twofold symmetry (Fig. 1). The copper(II) metal centre is five-coordinated in a distorted square-planar geometry by two nitrogen atoms from two 1-methyl-1*H*-imidazole ligands and two oxygen atoms from two  $NO_3^-$  defining the basal plane, and a coordinated water at the apex. The Cu–N and Cu–O bond lengths are not exceptional. In the crystal packing, intermolecular O—H…O hydrogen bonds (Table 1) between the coordinate water molecules and nitrate ions form chains along the *c* axis (Fig. 2).

#### Experimental

An aqueous solution of 1-methyl-1*H*-imidazole (1.64 g, 20 mmol) and  $H_2SO_4$  (0.98 g, 10 mmol) was treated with CuSO<sub>4</sub> (2.5 g, 10 mmol). After the mixture was churned for a few minutes, Ba(NO<sub>2</sub>)<sub>2</sub> (5 g, 20 mmol) was added to give a blue solution. Slow evaporation of the resulting solution yielded blue crystals after a few days.

#### Refinement

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H = 0.93-0.96 Å, O—H = 0.85 Å, and with  $U_{iso}(H) = 1.2 U_{iso}(C, O)$  or  $1.5 U_{iso}(C)$  for methyl H atoms.

#### **Figures**



Fig. 1. The molecular structure of the title compound, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Symmetry code: (A) 1-x, y. 1/2-z.



Fig. 2. Packing diagram of the title compound showing the stacking of the molecules along the c axis. Dashed lines indicate hydrogen bonds.

## Aquabis(1-methyl-1*H*-imidazole- $\kappa N^3$ )bis(nitrato- $\kappa O$ )copper(II)

F(000) = 756

 $\theta=3.0{-}27.5^\circ$ 

 $\mu = 1.48 \text{ mm}^{-1}$ 

 $0.30 \times 0.25 \times 0.20 \text{ mm}$ 

T = 293 K

Block, blue

 $D_{\rm x} = 1.613 {\rm Mg m}^{-3}$ 

Mo *K* $\alpha$  radiation,  $\lambda = 0.71073$  Å

Cell parameters from 3705 reflections

#### Crystal data

[Cu(NO<sub>3</sub>)<sub>2</sub>(C<sub>4</sub>H<sub>6</sub>N<sub>2</sub>)<sub>2</sub>(H<sub>2</sub>O)]  $M_r = 369.78$ Monoclinic, C2/c Hall symbol: -C 2yc a = 11.864 (2) Å b = 12.242 (2) Å c = 10.509 (2) Å  $\beta = 93.98$  (3)° V = 1522.6 (5) Å<sup>3</sup> Z = 4

#### Data collection

| 1742 independent reflections                                              |
|---------------------------------------------------------------------------|
| 1608 reflections with $I > 2\sigma(I)$                                    |
| $R_{\rm int} = 0.031$                                                     |
| $\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 3.0^{\circ}$ |
| $h = -15 \rightarrow 15$                                                  |
| $k = -15 \rightarrow 15$                                                  |
| $l = -13 \rightarrow 13$                                                  |
|                                                                           |

### Refinement

| Refinement on $F^2$             | Primary atom site location: structure-invariant direct methods                      |
|---------------------------------|-------------------------------------------------------------------------------------|
| Least-squares matrix: full      | Secondary atom site location: difference Fourier map                                |
| $R[F^2 > 2\sigma(F^2)] = 0.033$ | Hydrogen site location: inferred from neighbouring sites                            |
| $wR(F^2) = 0.088$               | H-atom parameters constrained                                                       |
| <i>S</i> = 1.14                 | $w = 1/[\sigma^2(F_o^2) + (0.0453P)^2 + 0.8389P]$<br>where $P = (F_o^2 + 2F_c^2)/3$ |
| 1742 reflections                | $(\Delta/\sigma)_{\rm max} < 0.001$                                                 |
| 102 parameters                  | $\Delta \rho_{max} = 0.45 \text{ e} \text{ Å}^{-3}$                                 |
| 0 restraints                    | $\Delta \rho_{min} = -0.37 \text{ e} \text{ Å}^{-3}$                                |
|                                 |                                                                                     |

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

|     | x            | у            | Ζ             | $U_{\rm iso}$ */ $U_{\rm eq}$ | Occ. (<1) |
|-----|--------------|--------------|---------------|-------------------------------|-----------|
| C1  | 0.3268 (2)   | 0.4147 (2)   | 0.0458 (2)    | 0.0496 (5)                    |           |
| H1A | 0.3799       | 0.4495       | -0.0012       | 0.060*                        |           |
| C2  | 0.2500 (2)   | 0.3234 (2)   | 0.1908 (2)    | 0.0505 (5)                    |           |
| H2  | 0.2402       | 0.2830       | 0.2641        | 0.061*                        |           |
| C3  | 0.1669 (2)   | 0.3521 (2)   | 0.1028 (3)    | 0.0543 (6)                    |           |
| H3A | 0.0905       | 0.3354       | 0.1042        | 0.065*                        |           |
| C4  | 0.1617 (3)   | 0.4595 (3)   | -0.1034 (3)   | 0.0765 (9)                    |           |
| H4A | 0.1108       | 0.5157       | -0.0797       | 0.115*                        |           |
| H4B | 0.1203       | 0.4044       | -0.1519       | 0.115*                        |           |
| H4C | 0.2178       | 0.4906       | -0.1541       | 0.115*                        |           |
| Cu1 | 0.5000       | 0.36656 (3)  | 0.2500        | 0.03738 (14)                  |           |
| N1  | 0.35145 (16) | 0.36341 (14) | 0.15477 (17)  | 0.0427 (4)                    |           |
| N2  | 0.21687 (16) | 0.41042 (16) | 0.01160 (19)  | 0.0493 (4)                    |           |
| N3  | 0.58487 (15) | 0.27708 (16) | 0.03266 (17)  | 0.0462 (4)                    |           |
| 01  | 0.5000       | 0.5610(2)    | 0.2500        | 0.0700 (8)                    |           |
| H1B | 0.5267       | 0.5958       | 0.1888        | 0.084*                        | 0.50      |
| H1C | 0.4733       | 0.5958       | 0.3112        | 0.084*                        | 0.50      |
| O2  | 0.57326 (14) | 0.37175 (12) | 0.08207 (15)  | 0.0473 (4)                    |           |
| O3  | 0.60599 (18) | 0.27180 (18) | -0.08000 (16) | 0.0715 (6)                    |           |
| O4  | 0.57213 (17) | 0.19602 (15) | 0.09852 (17)  | 0.0650 (5)                    |           |

## Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(A^2)$

### Atomic displacement parameters $(Å^2)$

|     | $U^{11}$    | $U^{22}$    | U <sup>33</sup> | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|-----|-------------|-------------|-----------------|--------------|--------------|--------------|
| C1  | 0.0505 (12) | 0.0489 (12) | 0.0495 (12)     | -0.0099 (10) | 0.0038 (10)  | 0.0080 (10)  |
| C2  | 0.0491 (12) | 0.0617 (14) | 0.0414 (11)     | -0.0145 (11) | 0.0085 (9)   | 0.0018 (10)  |
| C3  | 0.0433 (12) | 0.0639 (15) | 0.0559 (14)     | -0.0101 (10) | 0.0051 (10)  | -0.0042 (11) |
| C4  | 0.0762 (19) | 0.0697 (18) | 0.080 (2)       | -0.0042 (15) | -0.0213 (16) | 0.0228 (15)  |
| Cu1 | 0.0392 (2)  | 0.0413 (2)  | 0.0326 (2)      | 0.000        | 0.00887 (13) | 0.000        |
| N1  | 0.0436 (9)  | 0.0461 (10) | 0.0391 (9)      | -0.0060 (7)  | 0.0072 (7)   | -0.0004 (7)  |
| N2  | 0.0522 (11) | 0.0427 (10) | 0.0520 (11)     | -0.0038 (8)  | -0.0038 (9)  | 0.0025 (8)   |
| N3  | 0.0437 (9)  | 0.0580 (11) | 0.0371 (9)      | 0.0025 (8)   | 0.0052 (7)   | -0.0051 (8)  |
| 01  | 0.096 (2)   | 0.0467 (14) | 0.0651 (16)     | 0.000        | -0.0127 (15) | 0.000        |
| O2  | 0.0532 (9)  | 0.0481 (9)  | 0.0422 (8)      | -0.0034 (6)  | 0.0152 (7)   | -0.0010 (6)  |
| O3  | 0.0866 (14) | 0.0926 (15) | 0.0375 (9)      | 0.0187 (11)  | 0.0187 (8)   | -0.0079 (9)  |
| O4  | 0.0866 (13) | 0.0497 (10) | 0.0582 (10)     | -0.0069 (9)  | 0.0013 (9)   | 0.0026 (8)   |

## Geometric parameters (Å, °)

| C1—N1                                         | 1.321 (3)   | C4—H4C                  | 0.9600      |
|-----------------------------------------------|-------------|-------------------------|-------------|
| C1—N2                                         | 1.330 (3)   | Cu1—N1 <sup>i</sup>     | 1.9658 (19) |
| C1—H1A                                        | 0.9300      | Cu1—N1                  | 1.9658 (19) |
| C2—C3                                         | 1.350 (3)   | Cu1—O2 <sup>i</sup>     | 2.0216 (16) |
| C2—N1                                         | 1.377 (3)   | Cu1—O2                  | 2.0216 (16) |
| С2—Н2                                         | 0.9300      | Cu1—O1                  | 2.381 (3)   |
| C3—N2                                         | 1.363 (3)   | N3—O4                   | 1.225 (3)   |
| С3—НЗА                                        | 0.9300      | N3—O3                   | 1.229 (2)   |
| C4—N2                                         | 1.463 (3)   | N3—O2                   | 1.281 (2)   |
| C4—H4A                                        | 0.9600      | O1—H1B                  | 0.8500      |
| C4—H4B                                        | 0.9600      | O1—H1C                  | 0.8500      |
| N1—C1—N2                                      | 111.7 (2)   | N1—Cu1—O2               | 88.90 (8)   |
| N1—C1—H1A                                     | 124.2       | O2 <sup>i</sup> —Cu1—O2 | 176.40 (9)  |
| N2—C1—H1A                                     | 124.2       | N1 <sup>i</sup> —Cu1—O1 | 91.12 (5)   |
| C3—C2—N1                                      | 109.3 (2)   | N1—Cu1—O1               | 91.12 (5)   |
| С3—С2—Н2                                      | 125.4       | O2 <sup>i</sup> —Cu1—O1 | 88.20 (4)   |
| N1—C2—H2                                      | 125.4       | O2—Cu1—O1               | 88.20 (4)   |
| C2—C3—N2                                      | 106.6 (2)   | C1—N1—C2                | 105.21 (19) |
| С2—С3—НЗА                                     | 126.7       | C1—N1—Cu1               | 124.65 (16) |
| N2—C3—H3A                                     | 126.7       | C2—N1—Cu1               | 129.59 (15) |
| N2—C4—H4A                                     | 109.5       | C1—N2—C3                | 107.3 (2)   |
| N2—C4—H4B                                     | 109.5       | C1—N2—C4                | 125.5 (2)   |
| H4A—C4—H4B                                    | 109.5       | C3—N2—C4                | 127.2 (2)   |
| N2—C4—H4C                                     | 109.5       | O4—N3—O3                | 122.9 (2)   |
| Н4А—С4—Н4С                                    | 109.5       | O4—N3—O2                | 118.86 (17) |
| H4B—C4—H4C                                    | 109.5       | O3—N3—O2                | 118.2 (2)   |
| N1 <sup>i</sup> —Cu1—N1                       | 177.76 (10) | Cu1—O1—H1B              | 120.0       |
| N1 <sup>i</sup> —Cu1—O2 <sup>i</sup>          | 88.90 (8)   | Cu1—O1—H1C              | 120.0       |
| N1—Cu1—O2 <sup>i</sup>                        | 91.17 (8)   | H1B—O1—H1C              | 120.0       |
| N1 <sup>i</sup> —Cu1—O2                       | 91.17 (8)   | N3—O2—Cu1               | 112.97 (12) |
| Symmetry codes: (i) $-x+1$ , $y$ , $-z+1/2$ . |             |                         |             |

### *Hydrogen-bond geometry (Å, °)*

| D—H···A                                                                      | <i>D</i> —Н | $H \cdots A$ | $D \cdots A$ | D—H···A |  |  |
|------------------------------------------------------------------------------|-------------|--------------|--------------|---------|--|--|
| O1—H1B···O3 <sup>ii</sup>                                                    | 0.85        | 2.48         | 2.941 (3)    | 115     |  |  |
| O1—H1C···O3 <sup>iii</sup>                                                   | 0.85        | 2.48         | 2.941 (3)    | 115     |  |  |
| Symmetry codes: (ii) $-x+1$ , $-y+1$ , $-z$ ; (iii) $x$ , $-y+1$ , $z+1/2$ . |             |              |              |         |  |  |





